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Abstract

In this paper we develop a methodology for the statistical modeling
I of cardiac behavior and electrocardiograms (ECG's) that emphasizesja) the

physiological event/detailed waveform hierarchy; and 1b) the importance of
r control and timing in describing the interactions among the several

anatomical subunits of the heart. This metholology has been motivated by
a desire to develop improved algorithms for statistical rhythm analysis
that capture cardiac behavior in a more fundamental way but that stops

-Ta short of complete accuracy in order to highlight decompositions that can
be exoloited to simplify statistical inference based on these models. Our
models consist of interacting finite-state processes, where a very few of
the transition probabilities for each process can take on a small number
of different values depending upon the states of neighboring processes.
Each finite-state process is constructed from a very small set of elementary
structural elements. We illustrate our methodology by describing models
for three cardiac rhythms and include simulation results for one of these,
namely the rhythm known as Wenckebach
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I. Introduction

In this paper we describe a methodology for the statistical modeling

of cardiac activity and electrocardiograms (ECG's. Our primary purpose

in developing this-methodology is to provide a basis for the design of

automatic, statistical algorithms- for rhythm analysis of ECG's, that is,

the analysis of the sequential behavior of both atrial and ventricular

events as observed in the ECG (see our companion paper (Doerschuk 1985b)

where we describe our work on using these models to design ECG analysis

algorithms).

Modeling of ECG's is certainly not a new endeavor (for reviews see

Thomas 1979; Feldman 1977; Oliver 1977; LeBlanc 1973; Cox 1972; for further

references see Proceedings of the IEEE Computers in Cardiology Conference,

1974-1984), nor is the development of statistical ECG models for the

express purpose of designing signal analysis algorithms. However, the

modeling methodology we describe here differs in a number of important

ways from any earlier work. Roughly speaking what we have tried to do on

the one hand is to overcome the limitations of existing signal processing

models by capturing cardiac physiology in a far more fundamental way. On

the other hand, we have stopped far short of the detail found in physio-

logically-accurate models and rather have aimed both to keep only enough

detail to allow successful signal processing and to highlight several

critical features found in physiological models that allow the

development of ccmputationally feasible algorithms.

In particular, as we briefly describe in the next section, the

behavior of the heart is characterized by the..Cqc4rrn f a small.
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number of events corresponding to contraction or relaxation of different

major parts of the heart, and each of these events leads to the appearance

of a particular waveform in the ECG. While very accurate descriptions of

the ECG require breaking the ECG down further to account for the behavior of

very small -units of heart muscle, one can generally think of describing

the ECG in an hierarchical fashion -- an upper level describing discrete,

cardiac events and a lower level describing the impact these events have

on the ECG. As we discuss- at the start of Section 3, previously developed

rhythm analysis methods typically make use of this decomposition implicitly -

i.e. only the event level description is modeled, and it is assumed that a

wave detection preprocessor has been applied to the ECG to provide event-

level inputs to the signal processing algorithms. our approach differs

from these in two important ways. In the first place, we explicitly model

the two-level hierarchy, thereby allowing an integrated approach to wave

detection and rhythm tracking. This provides one with a fundamental way in

which to feed rhythm information back to the wave detection process (rather

* than in ad hoc fashions as can be found in some previous methods), Secondly,

and more importantly, our event-level descriptions of cardiac behavior are

far more detailed and accurate than those used previously (the importance

of this for signal processing will be discussed later). In particular, the

heart consists of several distinct subunits which interact relatively

infrequently but strongly. Furthermore the coordinated action of the heart

(or any particular anomaly) can be explained in terms of control and timing.

Specifically, the contraction of one part of the heart initiates the

contraction of a neighboring portion (and thereby controls its behavior)
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if that portion of the heart is ready to contract (i.e. if the timing

is right). As we describe, these observations plus a detailed examination

of the mechanisms that characterize different cardiac rhythms have led us

to develop a-methodology for constructing spatially distributed models of

cardiac behavior, emphasizing control and timing, and using a very small

number of building blocks.

This paper is-organized as follows. In the next section we provide

a brief introduction to cardiac anatomy and physiology. In Section 3 we

present an introduction to our modeling methodology and make some additional

comments about its-relationship to previous modeling approaches. Sections

4 and 5 describe the general mathematical structure of the upper and lower

levels, respectively, or our models, and in Section 6 we describe in detail

the several building blocks used to construct our upper level models. In

Section 7 we present these examples of rhythm models using our methodology

including the complete details and some simulations for one of these,

namely the rhythm known as Wenckebach (Section 7.3).

2. Cariac Anatomy and Physiology

In this section we briefly describe the functioning of the heart,

highlighting those aspects of cardiac physiology that are the keys to

the coordination of cardiac activity and therefore to the description

of cardiac rhythms. These features form the foundation of our approach

to cardiac modeling. For far more complete descriptions of cardiac

physiology see, for example, Chou (1979), Katz (1977), and Marriott (1977).

The pumping of blood by the heart is accomplished by the coordinated

contraction and relaxation of cardiac muscle cells which in electrical terms

correspond to the electrical depolarization and repolarization, respectively,

of the cells. The initiation and coordination of this pumping activity

IOf
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is accomplished by waves of electrical depolarization in the complex

electrical conduction system embedded in the muscular and structural

N. elements of the heart: the depolarization of one cell propagates to

initiate the depolarization of neighboring cells along the heart's elec-

trical pathways. An important fact is that after a depolarization, known

as an action potential, passes through a particular patch of cell membrane,

this portion of the heart goes through a process of repolarization

during which it is at first completely and then relatively unresponsive

to further attempts to initiate depolarization. This process lasts for

on the order of 300 msec., and is known as the refractory period, and the

two subdivisions are, respectively, the effective and relative refractory

periods. The measurable effects of all of this electrical activity are

the time-varying potential differences between fixed points on the surface

of the body. These time-varying signals comprise the ECG.

Let us now describe the sequential behavior of the various parts

of the heart that together produce a single, normal heartbeat. The first

major feature of a heartbeat is the contraction of the atria, the upper

chambers of the heart. The initiation of this contraction is accomplished

by the sinoatrial node (the SA node). An important feature of many of

the cells of the heart is that they are autorhythmic -- i.e. if they are9.

not excited for some period of time by an external depolarization wave,

they will undergo spontaneous depolarization and will continue to cycle

through repolarization and depolarizatoin at a particular rate as long

as no external wave interrupts the process. The cells in the SA node

are autorhythmic, and in a normal heart, except for an occasional isolated

-t



anomaly, they are the only autorhythmic cells that actually do undergo

periodic spontaneous depolarization, thereby initiating and controlling

the entire rhythmic beating of the heart. Following the depolarization

of the SA node, the propagating action potential depolarizes the atrial

muscle causing the contraction of the atria and generating a fluctuation

in the ECG called a P wave (see Figure 1). Then the propagating action

potential reaches the atrioventricular node (AV node) which, in a heart

with normal anatomy, is the only electrical connection between the atria

and the lower chamibers of the heart, the ventricles. In the AV node, the

depolarization wave travels with a much reduced velocity, leading to a

delay of 70-80 msec. in traversing the node. This permits the filling

of the ventricles prior to their contraction.

on leaving the AV node, the depolarization wave enters the special-

ized ventricular conduction system which, after several stages, ter-

inates in the ventricular muscle. The depolarization of the ventricu-

lar muscle causes the contraction of the ventricles and generates a

fluctuation in the ECG called an R wave (see Figure 1). Because the

ventricular muscle mass is much greater than the atrial muscle mass, the

R-wave potential fluctuations have much greater amplitude than those of

the P wave and hence the R wave has a much higher signal to noise ratio than

the P wave. As indicated in Figure 1, the 2 and S waves are respectively

* . the initial and final fluctuations associated with the R wave and the

entire waveform is referred to as the QRS complex.

The repolarization of the atrial muscle, which occurs during the

ventricular contraction, also generates a surface potential fluctuation.



-6-

This wave is smaller in amplitude than the P wave and is masked by the R

wave generated by the ventricles. Finally, the ventricular muscle repola-

rizes which generates a fluctuation in the ECG called a T wave (see Figure 1).

From this description we can immediately see the several features

described in the introduction. In particular, there is a natural hierarchical

way in which to describe the ECG: an upper, event level and a lower level

describing the actual waveforms resulting from those events. We also can

see the spatially-distributed nature of the cardiac process, with the

evolution of one portion of the heart affecting that of the next at those

points in time corresponding to the propagation of a depolarization wave

from one portion to the next. Intuitively, we might think of each portion

of the heart as a clock that cycles through a sequence of states starting

and ending at a resting state. For the autorhythmic SA node, transitions

out of the resting state occur spontaneously, while in non-autorhythmic portions,

such cycle-initiating transitions occur only when triggered by neighboring parts of

the heart. Such a structure clearly displays the features of control and timing.

Control here refers to one portion of the heart triggering activity in another.

Timing refers to the fact that for this triggering to have an effect it is necessary

4 for the second portion of the heart to be receptive to the excitation -- e.g. if it

is in an effective refractory state, the depolarization wave will be

terminated.

The preceding description is, admittedly, somewhat simplified. How-

ever, as we will demonstrate in this paper, not much additional complexity

is needed to develop a methodology capable of modeling relatively complex

cardiac rhythms. In particular, what is needed is to add a very few

*1%
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additional features to the "Clocks." des.cribing the various parts of the

heart. Specifically, there are three general mechanisms present in a

physiologically normal heart, which, when combined with three broad

categories of physiological abnormalities, lead to a wide variety of

arrhythmias.

The first ol these mechanisms has to do with autorhythmicity. As

pointed out previously, many elements of the conduction system are

autorhythmic. Those elements that are more distal [El in the conduction

system generally have lower rates. This relationship between location and

rate is called the gradient of autorhythmicity. Thus there exists a

competition between the SA node and other, distal, autorhythmic centers

for control of the heart, that is, for which site will actually initiate

cardiac depolarization. This leads us to the second important mechanism,

reset/stunning. Specifically, when an autorhythmic cell is depolarized

by the arrival of an external depolarization wave, the timer controlling

when the next spontaneous depolarization will occur is reset. Therefore,

in the normal heart, the faster SA node is able to retain control of the

heart in spite of the competition from the other autorhythmic centers

by continually resetting them before they have an opportunity to

spontaneously depolarize. When a node is reset, the phenomenon called

stunning can also occur where the time until the next spontaneous

[1 A distal structure is a structure that is depolarized late in the normal
depolarization sequence. A proximal structure is depolarized earlier in the .............
sequence.
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depolarization is increased over the nominal time.

The third mechanism has to do with the direction of propagation of

depolarization waves. While we have described unidirectional propagation

of the depolarization wave through the conduction system in what is called

the antegrade direction, the system is also capable of conduction in the

reverse direction, called the retrograde direction. This is very impor-

tant in cases when the cell membranes of the conduction system are not

in a refractory state and a depolarization wave is initiated in a distal

structure.

The three categories of physiological abnormalities nre decreased

conduction capabilities, increased or dee'eased rates of autorhythmicity,

and abnormal electrical pathways connecting various portiois of the heart

(typically in the atrioventricular conduction pathway). Decreased con-

duction can occur in several different forms, for example, toi~al block

of all depolarization waves, unidirectional block of all depolarization

waves coming from a particular direction, decreased propagation velocity,

or increased refractory time. Increased (decreased) autorhythmicity

refers to an increased (decreased) rate of autorhythmic depolarizations.

t* Abnormal electrical pathwyas include several different structures that

bypass all or part of the AV node and therefore have marked effects on

cardiac timing. This small number of abnormalities, and mechanisms are

commonly used to explain essentially all classes of cardiac rhythms.

In Section 7 we illustrate this using the mathematical formalism we have

developed for describing cardiac mechanisms, timing and control. Des-

criptions of many other rhythms in terms of these mechanisms can be found

*w ".*... * ' %
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in numerous texts. See also Doerschuk (1985a) for discussions of a number

of additional rhythms and the description of models for several of these.

As: a final point in this section we note that a very important aspect

of abnormal cardiac physiology is that it is typically the interaction

between the normal and abnormal parts of the heart that are of critical

importance. That is, many of the changes in an arrhythmic ECG are due to

how an abnormal substructure affects a normal part of the heart, rather

than to a direct change in the ECG caused by the depolarization of the

abnormal substructure. For example, the existence of a faster electrical

connection between atria and ventricles leads to marked changes in the

timing of the P and QRS waves and possibly to abnormal QRS complexes,

even though the atria and ventricles are perfectly normal. This is another

example of the importance of control in which the observed anomalies are

caused by abnormal control of normal heart muscle. We will give other

examples of this type in Section 7.

3. Introduction to the ECG Model

As we indicated in Section 1, modeling of ECG's is not a new topic.

Numerous researchers have developed extremely detailed electromagnetic

models of the heart either without particular attention paid to the time

evolution of the sources of the electromagnetic activity (see, for

example, (Geselowitz, 1979), (McFee, 1972), (Plansey, 1966, 1969, 1971,

1979), (Tripp, 1979) and (Wihswo, 1979)) or with time evolution as an

important consideration (e.g. (Miller, 1978a, 1978b), (Vinke, 1977),

(Moe, 1966), (Cohn, 1982) ,(Smith, 1982, (Rosenberg, 1972), (Zloof, 1973),

F and (Thiry, 1974, 1975)). These modeling efforts had as their objective

LIZ....,.UUU
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developing detailed and physiologically accurate models of cardiac electrical

activity and not developing models that could provide a useful basis

for ECG signal processing. In particular these models generally are

deterministic in nature or are only slightly removed from determinism (e.g.

by allowing an initial, stochastic choice of parameters). Furthermore,

the level of detailed included not only is far greater than is needed for

signal processing purposes but also involves a far larger number of degrees

of freedom than one could hope to identify using the very small number of

measurement traces taken in a typical ECG. On the other hand, there are

features in some of these efforts that we also include in our methodology.

In particular, some of these models do employ hierarchical descriptions

of cardiac timing and the actual electromagnetic effects, and they all

generally treat the heart as an interconnection of (typically very large

numbers of) submodels that interact infrequently but strongly.

Models that have been developed for signal processing purposes can

be divided into two broad categories depending upon whether they model

the sample-by-sample behavior of the ECG or just the sequential arrivals

of the waves appearing in the ECG. Many authors (e.g. (Marcus, 1982),

(Uijen, 1979), (Sornmo, 1981), and (Murthy, 1979)) have used sample-by-

sample models of individual ECG beats, while others ((Borjesson, 1982),

(Haywood, 1970), (Richardson, 1971)) have considered sample-by-sample

models of complete rhythms. However, none of these models describe

cardiac rhythms in the detail with which this paper is concerned.

Now let us briefly turn to event-based models. It is important to

realize that the sequential index for such models is very different

from that for sample-by-sample models. In a sample-by-sample model a

data point y(k) represents an ECG measurement at the kth time instant.

"a



In an event-based model a data point represents the time interval between

the kth occurrence of one type of wave and the next occurrence of that

or another specified type of wave. In most of these models-only the intervals
'

between successive R waves (corresponding to ventricular contractions) are

-considered. In one set of models, these R-R intervals are quantized into

several classes. In most cases- only 3 classes -- short, regular, or long --

are considered, and various rhythms are described either by use of Markov

chains ((Gersch, 1970, 1975), (Tsui, 1975), (Shah 1977), (White, 1976)) or

deterministic finite automata (Hristov, 1971) to model the evolution of

R-R interval patterns. In another set of papers (Gustafson, 1977, 1978a,

1978b, 1978c, 1979, 1981) interval lengths are not quantized, and an

extensive set of vector Markov models are developed to describe the

evolution of event interval patterns (see (Ciocloda, 1983) for an in-

dependent, though less- comprehensive development). In the first part

'- of this work (Gustafson 1977, 1978a, 1978b) only R-R intervals are con-

sidered, while P-R intervals are also considered in the later papers.

From the perspective of the approach taken in this paper, these

event-oriented models do highlight the timing information, which is of

primary importance in tracking or identifying cardiac rhythms. However,

the use of purely event-based models has some fundamental limitations.

In Section 1 we mentioned one of these, namely the implicit assumption

that wave detection has already been performed in a preprocessor. As we

indicated, one might expect superior performance in an integrated algorithm

in which rnythm tracking information assists wave detection. Only in

(Gustafson, 1979) does one find an ad hoc use of feedback from tracker to

MV -, -
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wave detector. While the absence of a fundamental way in which to effect

this feedback is a limitation, it is not the most serious one. A more

basic problem with event-based models is the limited way in which one

must model preprocessor errors. Specifically, this framework allows one to

model the error in measuring the interval between two events, but it cannot

acconmmodate the possibility that one of these events is missed altogether

by the preprocessor. While this is- not a serious problem for the large-

amplitude QRS-complex, it is-a serious problem for a much smaller P-wave.

The difficulty here is- with the sequential event-related index, and the

use of this index creates-another even more serious problem. In particular

in many cardiac rhythms-, such as- those involving some type of A-V node

abnormality that on occassion causes a ventricular contraction to be dropped,

there are a variable number of P waves between successive R-waves. For

rhythms such as these the use of an event-oriented time index breaks

down or at best leads to models with a tenuous connection to actual

cardiac behavior.

In our approach to cardiac modeling we have also attempted to high-

light the occurrence of cardiac events as has been done in these previous

signal processing models. However, we have at the same time avoided the

V difficulties described previously by basing our models far more closely

on cardiac physiology and anatomy. Our models rely heavily on spatial,

* temporal, and hierarchical decompositions. The spatial and temporal

decompositions are well-founded physiologically in that they are based

on the anatomic division of the heart into subunits within which events

occur at a far greater rate than do interactions between subunits. While



-13-

the framework we have developed for exploiting these two decompositions

is rich enough to allow one to consider extremely fine anatomic sub-

divisions (such as those considered in the physiologically-accurate

models described previously) using the small number of building blocks

we will describe, we have generally found it necessary to consider de-

compositions into only a few submodels (e.g. one for the SA node, one

for the atria, one for the AV node, etc.).

The hierarchical decomposition we have developed is not entirely

accurate physiologically but is similar in spirit to other modelling approaches and

is flexible enough to allow us to mimic cardiac behavior quite accurately.

Its two levels are based on a separation of discrete cardiac events and

timing from the generation of the actual ECG waveforms. This hierarchy

separates the high-level events we wish to detect and track from the

actual observed voltages, and this separation is useful for signal-pro-

cessing purposes.

Figure 2 presents a three-submodel example of the type of model we

consider. The square boxes at the upper level of the hierarchy comprise

the discrete-state physiological model, which captures the sequential

evolution of high level events in the heart. The mathematical structure

of these models is described in Sections 4 and 6. Each submodel repre-

sents a functional anatomic structure (e.g. the atria, the ventricles,

etc.). The directed solid lines indicate the initiator and recipient

of control inputs, which we call interactions. For example, the trans-

mission of a depolarization wave from atria to AV node might be modeled

".-, -
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via an interaction in which the present state of a submodel representing

the atria causes a transition in the AV-nodal submodel. representing the

initiation of the AV-nodal depolarization.

The triangular objects in Figure 2 are parts of the electromagnetic

model which models the actual observed waveforms. Each submodel corresponds

to the generation of the ECG contribution from a particular antomic struc-

ture of the heart (e.g. P waves from the atria). The dashed lines indicate

the control of the electromagnetic level by the physiological level of a

single submodel. These inputs are used to initiate the generation of waveforms

in the observed ECG. For example, the occurrence of a particular transition

in the physiological portion of an atrial submodel might initiate the gen-

eration of a P wave in the corresponding electromagnetic submodel. The

mathematical structure of the electromagnetic level is described in Section 5.

Note that the electromagnetic level does not affect the physiological

level and that no electromagnetic submodel affects any other electromagnetic

submodel. Note also that the unidirectional interactions between levels

occur only between the two levels of a single submodel (i.e. events in

a submodel corresponding to the atria cannot initiate an R wave).

Finally, recall from Section 2 that the abnormal aspects of an

arrhythmic ECG occur because there is some abnormal anatomic substructure

in the heart which makes a direct abnormal contribution to the ECG and/or

interacts with other normal parts of the heart causing them to make an abnormal

contribution to the ECG. In our models of arrhythmias, we take the same

hA approach. That is, we begin with a normal rhythm model which is transformed

into an arrhythmia model by altering the appropriate submodel. The contribution

of the altered submodel and its interactions with the unaltered submodels create th

p ~ ~ o the ~ ~
I~A* -
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arrhythmic ECG. In order for the interactions to occur, we often must

generalize the normal submodels. The alterations are to include properties

which were left out initially because, in the normal rhythm, they repre-

sented unnecessary detail.

4. The Upper Hierarchical Level

In this section we discuss the upper hierarchical level, which we

call the physiological model. This level is concerned with discrete

events, and we have chosen to use Markov chains to describe their evolu-

tion. Because of the importance of spatial decompositions, we have also

chosen a highly structured class of chains described in the following.

The state space of our Markov chains is the cross product of a set

of spaces corresponding to the "states" of subprocesses which comprise

the overall chain. Each subprocess corresponds to one of the anatomic

subunits of the heart. Furthermore, there is a direct correspondence

between each state of a subprocess and a physical state of the corres-

ponding anatomic subunit. We call each subprocess a submodel. We often

refer to an element in the subprocess "state" space as a state, and, in

an abuse of terminology we often refer to the individual subprocesses

as Markov chains.

Let xn be the state of the overall Markov chain which consists of a

i
set of N subprocess denoted x , i=Q,...,N-i and let p(n) be the pmf on

n
x . Since x is a Markov chain, p(n+ll=Ap(n) where A is a stochastic

n n

matrix. That is, the elements of A are the values of p(x Ix ) as x
n+1 n n

and xn+1 range over all allowed values.

A key feature of our models is that p(x X) has a great deal of
n+l ni
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structure. Specifically:

(1). Given x , the transitions of each of the component subprocesses are

independent. That is,

P(n+l Xn) = p ( + ' 1 ,.Nlxn) =i 0 p(x
n  Ix ) "

(2) For each s-ubprocess there are far fewer values cf p(xnix ) =
n+l n

p(Xn Ix, j=O,...,N-I1 than there are values of {x3, jgi}. That
n+l n n

is, we assume that p(x1  ix p(xi Ixi,hi) where h' hi x h? ji)
n+l n n+l n n n n

th
denotes the net interaction of all other subprocesses with the i sub-

process. Here hi may take on values 0, 1, 2, ... but the assumption is
n

that the number of possible values of h is far less than the number of
n

possible values of {x3, j i }. In fact in our examples hi takes on at most
n n

2 or 3 values and only one or two transition probabilities of the ith chain

are affected by the value of h . Thus, the subprocesses are "almost"

independent, but, as we will see, these interactions can have an extremely

important effect on the evolution of the subprocesses.

We now consider a very simple model for normal rhythm in order to

fix these ideas about interacting subprocesses. This model has two sub-

models, corresponding to a division of the heart into two anatomic sub-

structures: the SA-atrial (SA/A) substructure, composed of the SA node

and atria, and the AV-ventricular (AV/V) substructure, composed of the

AV junction and ventricles. As in the normal heart, the SA/A submodel

originates interactions with the AV/V submodel, corresponding to a

super-ventricular depolarization originating in the SA node and propa-

gating through the AV junction in an antegrade direction. For simplicity,

Si.
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the reverse (retrograde) conduction is not modeled.

In the SA/A submodel (Figure 3(b)), the state transition from 0 to

1 represents the firing of the SA node and the atrial depolarization.

The time required for the state to travel from state 1 to state 0 models

the random time between successive depolaraizations of the autorhythmic

SA node. Finally, by ass-uming that the atrial conduction velocity is

infinite (an oversimplification for the purpose of illustration only), state

1 also represents the excitation of the AV node by the atrial depolarization.

That state 1 (in the SA/A submodel) represents the excitation of

the AV node is reflected in the differing probabilities assigned in the

AV/V submodel (Figure 3(c)) depending on whether the SA/A-submodel state

is or is not in state 1. AV/V-submodel state 0 represents the fully re-

polarized state of the AV node and ventricles. If the AV/V submodel is

in that state and the SA/A submodel moves into state 1, then the AV/V-

submodel state transitions into state 1 with probability 1. This transi-

tion models the excitation of the AV node by the atrial depolarization.

If the AV/V substructure is not receptive to a depolarization (i.e. is

refractory), then the submodel state will not be in state 0 and the change

in the probabilities due to the SA/A-submodel state occupying state 1

will have no effect on the evolution of the AV/V subprocess. The time

required in the AV/V submodel for the state to travel through states 1

and 2 represents the (deterministic) AV-junctional delay time. The

transition from state 2 to state 3 represents the initiation of ventri-

cular depolarization. Finally, the time required for the state to

f E .%( t_),
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travel through states 3, 4, and 5 represents the (random) AV-junctional

and ventricular repolarization time. After the repolarization is comple ".,

the state traps- in state 0 awaiting another excitation from the SA/A

submodel.

5. The Lower Hierarchical Level

We now discuss the lower level in our hierarchy, which we call the

electromagnetic model. The spatial decomposition that was imposed on

the upper hierarchical level is also imposed on the lower hierarchical

level. As in the upper hierarchical level, we use the term submodel for

the decomposed elements. The reason that the hierarchical decomposition

-. carries through is that the individual waveforms in the ECG that are

modeled by the electromagnetic level are each due to a single anatomic

subunit.

Each state of each physiological submodel has a physical interpre-

tation. Certain transitions between states correspond to the initiation

of waves, so these transitions are used to drive the corresponding elec-

tromagnetic submodel. The output of each of the electromagnetic submo-

dels is a linear superposition of signals with shifted origins. The

unshifted signals are called signatures. The origin is the time at

which the initiating transition in the corresponding physiological sub-

-j model occurs. Each signature is a shift-invariant finite-durational

I* deterministic function with additive white zero-mean Gaussian noise

(signature noise), where the additive noise is independent from one

occurrence of the signature to the next and represents beat-to-beat

variations. Finally, the outputs of the individual eletromagnetic
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submodels, are linearly superposed and the result is observed in additional,

exogenous, white Gaussian noise (observation noise).

1 thLet S. be the signature from the i electromagnetic submodel
),k

when the ith physiological submodel makes a transition from j to k. Let

v be the white Gaussian observation noise. The observation y is thenT

y t)-= S' (it-n) + v(t).
i n X n-'Xn

Consider again' the example of the previous section. In the S/A submodel

(Figure 3(bl), as discussed previously, the state transition from 0 to 1

represents the firing of the SA node and the atrial depolarization. Thus,

as indicated in the diagram, the electromagnetic-model response to this

transition is the P wave of the ECG. The electromagnetic-model response

to the other state transitions, e.g. from 2 to 3, is identically zero and

hence is not indicated.

In the AV/V submodel (Figure 3(c)), as discussed previously, the

state transition from 2 to 3 represents the initiation of the ventricu-

lar depolarization. Hence the electromagnetic-model response to the

corresponding transition is the QRS complex and the T wave. Here, we

are modeling the QRS complex and T wave as deterministicly coupled

waveforms -- the ST interval duration is not random. Note that a more

complex model of the same type could allow a random coupling. The

'. t This equation represents an abuse of notation. Specifically, each
occurrence of a particular signature includes signature noise independent

of the noise in other occurrences. Thus the various occurrences of
S1 are not identical (although the deterministic mean is the same).

jk
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electromagnetic-model response to the other state transitions is identi-

cally zero and hence is not indicated.

Several aspects of the electromagnetic model merit comment.

(1). Note that some anatomic subunits do not cause waves in the ECG

(e.g. the AV nodesl and therefore the corresponding electromagnetic

submodel does not exist. Similarly, most transitions in our physiologi-

cal submodels model the timing between wave and interaction initia-

tions. and therefore have no effect on the corresponding electro-

magnetic submodel. Thus very few transitions actually contribute to

the ECG.

(2) The randomness in the signatures models the beat-to-beat variation

in the morphology of the ECG waveforms for a single subject. Clearly

one could consider a more complex correlated model for the signature

noise in order to model these variations more realistically. In

A addition, by augmenting particular subprocess state spaces and

allowing the additional transitions to initiate different versions

. of the same signature, different morphologies for the same wave can

be included.

(3) The additive white Gaussian noise v that is added to the summed

output of the electromagnetic submodels models all noncardiac con-

tributions to the observed signal (e.g. contributions due to other

muscles, measurement errors and noise, etc.).

(4) The Markov chain cycle interval need not equal the signature sam-

pling interval. Typically, the Markov chain cycle interval can be

taken to be substantially larger than the signature sampling

4 .
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interval reflecting the difference in time scale between interaction

events (which determine the Markov chain cycle interval) and events

internal to the anatomic svbmodels (which set the signature sampling

interval)-. Because signatures can only be initiated at Markov chain

cycles, unequal intervals appear to imply that signatures cannot be

initiated at arbitrary signature samples. However, by using an

augmentation technique as in (2), this problem can be overcome. For

an example, see the Wenckebach model of Section 8.

6. The Microscopic Model -- Structural Elements

In this section we describe the small number of elementary structural

elements that are used in constructing the various submodels of our physio-

logical models. Each of these elemerts is a piece of a Markov chain.

There are two fundamental structural elements, which are essentially

elapsed time clocks, out of which three other structural elements are

constructed.

The first structural element is the delay line (DL). When the

state of a chain enters the first state of such an element, denoted i,

it undergoes a random time delay and then arrives at the final state

denoted o. The delay is called the transit time. The pmf on the tran-

sit time is specified and unaffected by events in the other chains. In

block diagrams we use the symbol shown in Figure 4 for a DL. The DL

should be viewed as a piece of an overall chain. Here the arrows at

either end of the DL indicate transitions into the initial state i from

other states in the overall submodel (possibly including 0) and from the

final state 0 to other states (possibly including i). No transitions

exist to or from external states to states internal to the DL. The DL

is used to model simple timing behavior in the coordinated operation of the
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heart. Two examples of DL's are displayed in Figure 5. In the first of

these there are no feedback transitions so that the transient time is

bounded by the length of the DL. In the second example the presence of

feedback transitions implies that there is in principle no upper bound

on the transit time. In both examples. the transit time pmf can be adjusted

by varying the several transition probabilities.

The second structural element is the resettable delay line (RDL).

7This element is used to model both. timing and the reset and stunning

phenomena that can occur when a depolarization wave reaches an autorhythmic

site. We often use the term delay line as a generic name for both DLs and

RDLs. The differences between the RDL and the DL are that there are two

different mechanisms for the state to exit an RDL, and an RDL has transi-

tion probabilities that are controlled, in a very simple and specific

way, by interactions initiated by another subprocess in the overall Markov

chain. Specifically, the possible interactions impinging on a chain

containing an RDL are divided into two classes denoted normal and abnormal.

Within each class the transition probabilities in the RDL are constant.

When the interaction is in the normal class, the RDL behaves as DL,

transiting from the initial state i toward the final state 0 as long as

the interaction remains in the normal class. However, when the inter-

action is in the abnormal class, a second set of transition probabilities

is used for the next transition. The second set of transition probabilities

forces the state to leave the RDL and enter a state, external to the RDL,

called the reset state and denoted by r.
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In block diagrams we use the symbol shown in Figure 6 for an RDL.

Here the dashed arrow and symbol c denote the effect of interactions from

other submodels. The variable c takes on two values: R (fbr "reset") if

the current impinging interaction is in the abnormal class and R (for

"not reset") otherwise. An example of an RDL is given in Figure 7.

The third structural element is the autorhythmic element which is

capable of sustained cyclic behavior without external excitation. This

element is constructed from DL(s) and/or RDL(s). The basic idea is to

attach the input and output of a DL together, as in Figure 8. If an DL

is used, then this specifies the entire chain. Ifan RDL is used, then

it is also necessary to specify the identity of the reset state (-see the

example in Section 8.2). The choice of DL versus RDL depends on what

physiological process is being modeled. Typically one or more transitions

in the autorhythmic element will initiate signatures in the ECG (corres-

ponding, for example to the P wave resulting from the autorhythmic

operation of the SA node)..

The fourth structural element is the passive transmission line

(PTL). This element is constructed from a DL or anRDL. We illustrate

the DL case in Figure 9. A PTL is a connection of a single state, called

the resting state, to the initial state of a DL. The only allowed tran-

sition out of the resting state is into the DL. The transition pro-

bability for this transition, denoted p, depends on the value of the

current interaction impinging on the submodel containing the PTL. The

possi:le values of the implinginc interacti on ar-r

disjoint sets called the autonomous and nonautonmous s . . ,
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current impinging interaction is in the autonomous set, p=O. That is,

the resting state is a trapping state. In the other case (nonauto-

nomous), p>O. The PTL can be used to model a part of the heart, such as

the AV node, that begins depolarization (i..e. enters the delay line) only

* -[ when an external depolarization wave excites it. Again it is possible

that one or more transitions in the PTL will generate signatures in the ECG.

The fifth structural element is the bidirectional refractory

* transmission line (BDRTL), shown in Figure 10, which is a complete sub-

model in itself and is used to model structures capable of supporting

conduction in either the antegrade or retrograde direction. All unlabeled

transition probabilities in Figure 10 take on the value 1. The state C

corresponds to the repolarized resting state of the anatomic substructure.

The RDL labeled A (R) corresponds to antegrade (retrograde) conduction.

In accordance with these designations, the BDRTL attempts to excite the

submodel(s) corresponding to the adjacent distal (proximal) anatomic

substructure(s) whenever the BDRTL state occupies state oA (oR), the

final state of the antegrade (retrograde) conduction RDL. RDLs are used

here in order to model the possible collision of two depolarization waves,

one in the antegrade and one in tile retrograde direction. The relationship

between the resting state 0 and the RDLs A and R is a simple generalization of

the PTL structural element. The third delay line (F), a DL, corresponds

to the refractory period. A nonresettable delay line is used because, at

the level of physiological detail that we are modeling, the duration of

the refractory period is independent of all external events.

The state transition probabilities pO,A,, and p ,F and the RDL

"" " "" " : " " " " "" " " "' " " "" " ".p-,APORl-.. -. d i . --'.- - . -,.F ,- -"- .:
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state transition probabilities (controlled exclusively through cA and

c R are the only probabilities that depend on the states of other submodels,

that is, on the interactions impinging on the BDRTL. In the absence of

external excitations, p0,A = P ,R = P0,F = 0 and cA = cR = R. That is,

under these conditions, if the process- was in the resting state, it remains

there until an extended excitation initiates depolarization. If the process

was i'n the middle of a depolarization, the depolarization continues in a

normal fashion. If the BDRTL is-excited from the antegrade direction but

not simultaneously from the retrograde direction, then p 1,
O,A O0,R

P0,F = 0, cA = R, and cR = R. In this case if the process was in the

resting state, it immediately exits and begins an antegrade depolarization.

N" If the process is in the middle of a retrograde depolarization, the de-

polarization is stopped by restting the RDL. This models the collision of

the two depolarization waves. After this point in time the process proceeds

through the DL modeling the refractory period. For the reverse case (i.e.

excited from the retrograde direction but not simultaneously from the

antegrade direction), the values are p0,R = I' P0,A = P,F 0 cR =

and cA = R. Finally, if the BDRTL is simultaneously excited from both

the antegrade and retrograde directions, the pO,F = 1, p0,A = P0,R = 0,

and c c =R.
A R

Depending on what anatomic substructure the BDRTL models, it may or

may not contain transitions which generate a non-zero response in the

electromagnetic model (e.g. if the BDRTL models the AV node, no signature

will be generated by this submodel). If the BDRTL does contain such

transitions, then there are three basic situations which we illustrate

assuming that the BDRTL models the atria which can be excited by the SA

node or by retrograde conduction from the AV node. The three situations

% •
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9.

in which signatures are generated correspond to

(1) Antegrade condution without a reset (e.g. a normally conducted P

wave from the SA node through the atria).

(2) Retrograde conduction without a reset (e.g. a retrograde P wave from

the AV node through the atria).

(3) Reset-antegrade or retrograde conduction, corresponding to collisions

of two depolarization waves. Such anoccurrence generates a so-called

fusion depolarization (e.g. a fusion P wave due to joint SA-nodal

and retrograde-AV-junction deplorizations).

Though it is not the only possiblity, we have always used the

transition from the resting state to i or i to generate the nonreset
A R

antegrade and retrograde electromagnetic model responses. For simplicity

in our work, we have assumed that a fusion depolarization is identical

to the response from the earlier of the two depolarization waves. Models

£ allowing for a different signature for fusion waves, can be easily
S

generated with only slight modifications.

7. Examples of ECG Models

The small number of building blocks described in the preceding

section can be used to construct models for any cardiac rhythm. In our

work (Doerschuk, 1985a), for example, we have shown how one can relatively

easily write down models for cardiac arrhythmias involving re-entrant

pathways (in which depolarization waves can in fact cycle through parts

of the heart several times), abnormal atrial-ventricular conduction

pathways (such as the so-called Wolff-Parkinson-White syndrcme), and

m the presence of ectopic foci (autorhythmic sites other than the SA node

with increased autorhythmic rates that allow them to compete successfully

V.
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b1

with the SA node. In this section we illustrate our methodology by pre-

senting models for three different cardiac conditions: normal rhythm,

normal rhythm With ectopic focus PVCs, and second degree AV block (Mobitz

Type I), also called Wenckebach. The first two models are specified at

the level of the structural elements-described in the previous section,

while the third is described in complete detail.

A simple, graphical, abstract notation for classes of models is

helpful in describing the models. This paragraph describes such a nota-

tion by example. Figure 11 illustrates a model made up of four submodels.

The boxes labeled CO, ..., C3 denote these submodels. The directed lines

between boxes indicate the existence of an interaction in the indicated

direction. Thus, for example, submodel CO initiates an interaction with

submodel Cl. The number of values which the interaction can take on is

not specified. The wavy lines- terminating in 30, ... , S3 indicate that-.

the submodel of the originating box contains one or more transitions

which initiate a signature whose name is the label at the end of the

arrow.

8.1. Normal Rhythm

The rhythm modeled in this subsection is a prototypical normally

conducted rhythm. A block diagram of the model and a listing of the

intersubmodel interactions is given in Figure 12. As seen in Figure 12,

the heart is divided into four anatomic substructures--SA node, atria,

AV junction, and ventricles--each of which is modeled by a separate

submodel.

Qualitatively, the model behaves in the following manner. The SA-

nodal submodel initiates a depolarization wave. This is the only way in

, N
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which a depolarization can be initiated in this model. The depolarization

then propagates antegrade through the atrial submodel, producing the P

wave; the AV-junctional submodel, which makes a zero contribution to the

ECG; and finally the ventricular submodel, producing a QRS-T complex.

Because only antegrade conduction is included in the model, submodel

0 is not resettable and submodels 1 and 2, which would be BDRTLs if

retrograde conduction were included, are instead simple arrangements of

*delay lines.

8.2. Normal Rhythm with Ectopic Focus PVCs

As we have mentioned previously, there are numerous autorhythmic

sites in the heart, and occasionally, even in a normal heart, one of these

sites may successfully initiate a depolarization wave. Such a site is

referred to as an ectopic focus or pacemaker. If this focus is located

in the ventricles, what can result is the contraction of the ventricles

a short time before the next normal depolarization would have occurred.

t
Such a beat is called a premature ventricular contraction (PVC). Be-

cause of the anomalous location at which this depolarization starts

(typically in one ventricle or the other), the resulting QRS waveform

is generally quite different from a normal beat. Typically the PVC is

a more spread-out waveform as the initiation of the contraction of one

t PVC's can also arise through a reentrant pathway mechanism. In this

case there is typically a more regular relationship between the timing
of the PVC and the previous, normal QRS complex. It is certainly
possible to model this mechanism us-ing our methodology, but we do not
do so here.

I
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ventricle precedes that of the other by a noticeably larger time interval.

Furthermore, when a PVC occurs, it is possible for the resulting depolari-

zation wave to propagate in a retrograde direction. This depolarization

wave may collide with the normal SA-node-initiated wave or it may complete

a retrograde depolarization through the AV node and atria, finally arriving

at and resetting the SA node.

In order to develop a model for this arrhythmia, we have modified

the normal-rhythm model in two ways. First, we have modified the part

of the normal-rhythm model which corresponds to the part of the heart

which exhibits the abnormal physiology. Therefore we have replaced the

ventricular submodel by a new ventricular submodel and an ectopic

ventricular pacemaker submodel. Second, we have modified, as required,

the remaining parts of the normal-rhythm model so that they can interact

with the part modified in the first step. The primary purpose of these

modifications is to allow retrograde conduction and resetting of the

SA node. A block diagram of the model and a listing of the inter-

submodel interactions is given in Figure 13.

8.3. Wenckebach

Wenckebach is characterized by a multibeat cycle in

which the P waves are repeated at constant intervals but the P-R inter-

val grows until, in the final beat of the cycle, the R wave is dropped.

Then the cycle begins again with the P-R interval reset to its initial

small value. The increase in the P-R interval from beat to beat is

usually greatest at the beginning of the multibeat cycle. The multibeat

cycle is typically three or four beats long.

-%.-.%
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Physiologically, the cause of Wenckebach is a defective AV node.

Specifically, the AV node is such that it has a long relative refractory

period. At the beginning of the multibeat wenckebach cycle, the AV node

is at rest. The first excitation occurs and is transmitted to the ven-

tricles and the AV node enters its refractory period. Because the

refractory period is prolonged, the second excitation from the atria

reaches the AV node during its relative refractory period. The impulse

is still able to excite the AV node (although propagation is at a

reduced speed) and through it the ventricles, since the effective

refractory period is past. However, the early excitation of the AV

node has two effects: the following P-R interval and the following

refractory period are both prolonged. Thus the third excitation occurs

even earlier in the relative refractory period. This lengthening of

the P-R interval and refractory period continues until finally a

depolarization wave attempts to excite the AV node during its effective

refractory period and is not conducted at all. This leads to the dropped

R wave. Because the AV node is not excited during the dropped beat, the

occurrence of the dropped beat gives the AV node time to complete its

refractory period. Therefore, the P-R interval and refractory period

for the succeeding depolarization of the AV node are reset to their

initial (i.e. small) values.

We now describe the behavior of the AV-nodal (AV) submodel during

a Wenckebach cycle (see Figure 14 and, for more detail, Figure 15).

1
Initially the AV node is at rest: x =0. When the AV submodel is

Mr
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excited, the state transitions into the AV DL. The transit time for

this DL is the AV-juncticnal delay. A transit time from the AV1 DL is

biased toward shorter values than a transit time from any of the other

AV. DLs. Therefore, as desired, this is the shortest possible AV-1

junctional delay. After the AV-junctional delay, the AV submodel

attempts to excite the V submodel: x =1. Then the AV submodel enters

the effective refractory period. Note that the effective refractory

period contains a transit-time contribution only from the AR4 DL and

therefore the effective refractory period is short. Following the

effective refractory period is the relative refractory period consisting

of the total time spent in the RRI, RR2 , and RR3 DLs. If the next excita-

tion of the AV submodel is sufficiently delayed, the AV submodel's state

will pass through the three RDLs labeled RR1, RR2, and RR3 and reenter

the resting state (state 0). However, that is not what usually occurs.

Rather, the refractory period duration is such that the next excitation

of the AV submodel generally occurs during the relative refractory period.

More specifically, because this first beat of the cycle had a short AV-

junctional delay (using delay line AVI) and a short effective refractory

period (avoiding delay lines AR, AR2, and AR3), the next excitation of the

AV submodel genreally occurs while the AV submodel's state is in the

final RDL of the relative refractory period, namely RR3. Therefore, the

excitation of the AV submodel forces the AV submodel's state to transi-

tion into the AV2 DL, leading to a somewhat longer AV-junctional delay

than in the first beat of the cycle and subsequently to a somewhat

longer effective refractory period (AR3 and AR4 delay lines).

-9.
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In this state of the cycle the state is typically in the RR2 DL

when the following excitation occurs. Therefore, the state is reset

into the AV DL. This leads to a still longer AV-junctional delay (AV33 3
delay line) followed by a longer effective refractory period (AR2' AR3,

and AR4 delay lines). The state is typically in the RR1 RDL when the

following excitation occurs. Therefore, the state is reset into the AV4

DL producing a long AV-junctional delay followed by a long effective

refractory period (AR1, AR2, AR3, and AR4 delay lines). In this part of

the cycle the state is typically still in one of the effective-refractory-

period DLs when the following excitation occurs. Therefore this excita-

. tion has no effect on the AV s-ubmodel. Rather, the state of the AV

submodel continues through the effective-refractory-period DLs, the

relative-refractory-period RDLs, and finally traps in the resting

state (state 0). It remains in the resting state until the succeeding

excitation occurs. Therefore, the excitation which should have started

beat five does not get passed on to the ventricles. That is, beat five

K is dropped. Finally, because the state of the AV s-ubmodel is able to

reach the resting state (state 0), the Wenckebach cycle is restarted.

The actual Markov chains and signatures are shown in Figure 16.

They were chosen based on a nominal heart rate of 60 beats per minute

with a Markov chain cycle period of 1/25 second and a signature sampling

period of 1/100 second. Note the multiple copies of the P wave signa-

, ture with one, two, or three leading zeros. These were introduced so

that P waves could begin at any signature sample rather than at only

7 every fourth signature sample (i.e. at a Markov chain transition).

.-.- '.' \ "' " . *-*.*- .r- ' - . - - - - .
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Similar remarks apply to the V and T waves in the V submodel.

Table 1 gives a summary of a few successive Wenckebach periods.

Note the lengtheing P-R intervals followed by a dropped beat. Note

also that the model is not deterministic. For example, sometimes the

Wenckebach cycle is four beats long and qometimes it is five.

Finally, Figure 17 gives the actual simulated ECG corresponding

to the data in Table 1.
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Figure 4. Delay Line Symbol.
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Figure 6. Resettable Delay Line Symbol.
i =input, o =normal output, r =reset output, and c =control
input.
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Part (a): Submodel Structure.
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Submodel for the Atrial Substructure
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Figure 13. Continued.
Part (c): Intersubmodel Interactions. These interactions are similar to

those of the Normal Rhythm model described in Figure 12. Therefore, only the

interactions for submodel 1 are given.
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ii The interval data for th,.s simulated ECG is tabultaed inTable 1.
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P wave Time P-R Interval Time Since Last
Number (sec.) (sec.) P wave (sec.)

0 0 .13

1 .99 .21 .99
2 2.07 .27 1.08

3 3.03 dropped .96
4 3.94 .12 .91
5 4.89 .23 .95
6 5.96 .24 1.07
7 7.01 .33 1.05
8 8.05 dropped 1.04
9 8.99 .16 .94
10 9.99 .22 1
11 10.99 .23 1
12 11.91 dropped .92
13 12.89 .18 .98
14 13.94 .22 1.05
15 14.98 .24 1.04
16 16.02 .28 1.04
17 16.96 dropped .94
18 17.95 .09 .99
19 18.93 .26 .98
20 19.96 .3 1.03

Table 1. Wenckebach: P-P and P-R Intervals.
The simulated ECG from which this interval data was computed is
shown in Figure 17.
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